(Português do Brasil) Números imaginários… Mas o quê? Por quê? (V.1, N.3, P.9, 2018)

Facebook Twitter Instagram YouTube Spotify

Disculpa, pero esta entrada está disponible sólo en Portugués De Brasil. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Tiempo de leer: 2 minutos

Disculpa, pero esta entrada está disponible sólo en Portugués De Brasil. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

#acessibilidade Símbolo de raíz quadrada dizendo “Por que não podemos ficar juntos?”, ao que o menos um responde “É complexo…”

Durante o ensino fundamental, escutamos que não poderiam haver raízes quadradas de números negativos. Mas aí, o ensino médio começa e, de repente, aparece um i ali, uma √-1 acolá e pronto… De onde eles surgiram? Para que servem? Seus problemas acabaram! Vem comigo no Guia dos Entusiastas da Ciência.

Tudo está lindo, você entendeu a matéria, está fazendo sua lista de exercícios e o resultado do último exercício termina em uma raiz quadrada de número negativo. Quando isso acontecia os matemáticos chegavam a um impasse: o que fazer? Abandonar o problema? Jamais! Eles procuraram outra forma de resolver. Essa maneira foi criar um novo conjunto numérico, o conjunto dos números complexos, e estabelecer um novo número chamado i. Este número é definido como i = √-1.

Agora é possível resolver problemas que antes pareciam insolúveis, veja o exemplo:

x+ 4 = 0 ⇒ x = √-4 ⇒ x = √(-1)*4 ⇒ x = √(-1) 4 ⇒ x = 2i

Os números complexos apresentam uma forma característica, expressa na forma z = a + bi, onde a e b são números reais e i é o nosso número recém definido. Vale ressaltar que a é a parte real e bi a parte imaginária. Mas imaginária por quê? “Porque não pode haver raízes quadradas de números negativos. Mas… basta imaginar que pode haver, e já há. Tão simples como isso… Foi o que fizeram alguns matemáticos” (PINA, 2009).

Todo número pode ser descrito dessa forma, no entanto, quando b = 0, dizemos que o número não possui parte imaginária, que ele é puramente real. Caso a = 0, dizemos que este número é puramente imaginário.

Preparado para as aplicações? Os números complexos são usados na resolução de equações algébricas, equações diferenciais e na representação das funções logarítmicas, tendo utilidade em várias áreas como engenharia elétrica e de controle, eletromagnetismo, física quântica e teoria do caos.

Os números complexos são um exemplo da engenhosidade na resolução de problemas, na busca por explicar fenômenos da natureza onde volta e meia é necessário resolver equações de grau ≥ 3. São uma ferramenta bastante útil, sabendo como utilizá-los você vai evitar muita dor de cabeça.

Fontes:

Fonte da imagem destacada: Internet

PINA, M. A. Pequeno livro da Desmatemática. Portugal, Assírio & Alvim, 2012.
EVES, H. Introdução à História da Matemática. 5ª ed. Campinas-SP, Editora da Unicamp, 2011.

Para saber mais:

Matemática essencial, ENSINO SUPERIOR : Variáveis Complexas: Números complexos. Disponível em: http://www.uel.br/projetos/matessencial/superior/vc/vc01.htm Acesso em 19/06/2018.

Outros divulgadores:

Vídeo do Rafael Procópio no YouTube sobre números complexos

Compartilhe:

4 comentário(s) em “(Português do Brasil) Números imaginários… Mas o quê? Por quê? (V.1, N.3, P.9, 2018)

Responder

Seu endereço de e-mail não será publicado.Campos obrigatórios estão marcados *